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We are developing high-order ALE discretization methods for
large-scale hydrodynamic simulations

The Arbitrary Lagrangian-Eulerian (ALE) framework for the equations of shock hydrodynamics is the
foundation of many large-scale simulation codes.

ALE Equations

d—’
Momentum Conservation: p ( Y +c- V\'/') =V-.o

dt
. dp —
Mass Conservation: ar +c-Vp=—pV .V
. de .
Energy Conservation: P 4 +c-Ve) =0:Vv
Traditional ALE simulation of a 2D shock
Equation of State: p = EOS(e, p) triple-point Riemann problem
dx
Equation of Motion: P +c=Vv J{ |
ALE discretization approaches consist of: / (" | 11 |
) f I
e Lagrange phase | =

» mesh optimization step \
“advection” \‘

» field remap step N
phase

Purely Lagrangian simulation with high-

» multi-material zone treatment step
order Qg-Q, curvilinear finite elements
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High-order curvilinear Lagrangian discretizations need a matching
accurate “advection” phase

We have developed BLAST - a high-order research g /
Lagrangian hydrocode featuring:
 Curvilinear mesh zones

» High-order kinematic and thermodynamic fields

e Exact conservation on semi-discrete level

Semi-discrete finite element method —
Q1 motion

4 Q3 motion
v
Momentum Conservation: M,— = —F -1 .
dt kinematic thermOdynamlc
Energy Conservation: Mea =FT.
dx
Equation of Motion: 1 =v

o FLOP-intensive numerical kernel (F)j = /Q( )(U : VW;) ¢;
t

e Generalizations of classical SGH schemes

@ Kolev and Rieben, A Tensor Artificial Viscosity Using a Finite Element Approach, JCP, 2009.

@ Dobrey, Ellis, Kolev and Rieben, Curvilinear finite elements for Lagrangian hydrodynamics, IJNMF, 65(11-12):1295-1310, 2010.

® Dobrey, Kolev and Rieben, High order curvilinear finite element methods for Lagrangian hydrodynamics, SISC, 2012.

@ Dobrey, Ellis, Kolev and Rieben, High order curvilinear finite elements for axisymmetric Lagrangian hydrodynamics, CAF, 2012.
® Dobrey, Kolev and Rieben, High order curvilinear finite elements for_elastic-plastic Lagrangian dynamics, JCP, (submitted).

® BLAST: High-order curvilinear finite element code for Lagrangian shock hydrodynamics, http://www.lInl.gov/casc/blast

@ MFEM: Parallel finite element discretization library, http://mfem.googlecode.com
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High-order Lagrangian simulations can support extreme curvature,
but the simulation time-steps become too small

i ‘Ti

i
it
| j,‘t

ALE-AMR simulation of RT instability High-order Lagrangian simulation in BLAST Close-up of the Qg curvilinear zones
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Prior work related to curvilinear mesh optimization and high-
order field remap

= There has been much work on mesh relaxation in the context of low-
order meshes (i.e. Q, meshes with straight edges), including;:

 Equipotential rezoning (Winslow, Crowley)
« Reference Jacobian based smoothing (Margolin, Knupp, Shashkov)
« Mesquite library: www.cs.sandia.gov/optimization/knupp/Mesquite.html

= There has also been a lot of research on conservative and monotonic
field remap (mostly in the lower-order case), such as:

Cell-centered remap schemes (Maire, Loubere, Barlow)

Conservative remap via overlays and swept volumes (Bailey, Shashkov, Kucharik)

Flux corrected transport (Kuzmin, Turek, Scovazzi)

Optimization based remap (Bochev, Rizdal, Scovazzi, Shashkov)

= There are also alternative approaches such as ReALE based on changing
the local mesh connectivity (Loubere, Maire, Shashkov, Breil, Galera).

= We want to extend these ideas to the general high-order case.
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Harmonic curvilinear mesh optimization

Mesh optimization is needed in ALE to alleviate small time
steps, poor approximation and non-physical behavior.

The goal is to improve the current mesh with respect to a
distortion-related quality metric.

Harmonic-type mesh relaxation is based on local averaging
of high order mesh nodes.

General form: | x"T1 — x™ 4 M_l(f — Lx") ﬁ

where Lis a “high-order mesh Laplacian’ and M is a smoother/preconditioner for L.

The mesh Laplacian is a topological, zero row sum matrix that specify the averaging
stencil and weights through its off-diagonal entries.

For a uniform Q, mesh with equal weights, L is a just the scaled 5/7-point Laplacian.

The relaxation converges to the L. - harmonic extension of the boundary nodes to the
interior, but the smoother M influences the path to convergence. Other factors:
number of iterations, using PCG instead of simple iteration, FEM basis (Bernstein).
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High-order mesh Laplacians and smoothers

There are different approaches to define topological mesh Laplacians for high-order meshes:

1.

Use FEM sparsity to connect the high-order nodes with equal weights

— This doesn’t take into account the the differences between element-, face-, edge- and vertex-associated
high-order nodes

2. Assemble high-order stiffness matrix by ignoring the transformation to the reference element
—  Mapping to the reference element and its Jacobian: ¢ : E > E, bp(z) = Z xp ior(1), Je() = VOg(1).
—  Local stiffness matrix, and mesh Laplacian based on its purely topological version: *
(SE)ZJ = /A J51V¢Z . J51V¢J|JE‘ — XTL2X = Zx%gxg = Z/\V@E : VCI)E
E > 7 JE
3. Use the the “discrete gradient” between the high-order finite element spaces. Iy
— letS, C H'andV;, C H (curl)be the high-order nodal and Nedelec FEM spaces. P S p
—  The “discrete gradient” G is the matrix representations of the mapping ©n € 5, = Vi € V), ¢ 70 470 ¢
— Note that GG is a topological matrix, which is independent of the node coordinates. S,;/:__/':
—  Globally defined mesh Laplacian: Ls = GT G.
Smoother choices: = —
1. Diagonal l1-Jacobi y
—  Good for symmetry, but slow to converge. From hypre’s AMS solver
2. Low-frequency preserving polynomial filter
— M. Berndt and N. Carlson, Using Polynomial Filtering for Rezoning in ALE, Multimat ‘11. B
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Harmonic relaxation can improve meshes from arbitrary high-

order Lagrangian hydro

. : \
L, Laplacian with

polynomial smoother
(20 iterations)
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Tangential L, smoothing of 3D
triple-point shock Q, mesh
(150 iterations).
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Inverse-harmonic curvilinear mesh optimization

Harmonic smoothing is an integral minimization problem:

min (; TLX) = mm( / Vog : V(I)E> = minz _W(Jg(2))dz

X7 XT
where W(J) = %(] S — %tr (JTJ) : (continuous form of the nodal ||.J||* — 2 det .J)

The inverse-harmonic (Crowley/Winslow) method minimizes the gradient norm of the
inverse maps:

min F'(x) = mm( Z/ V(®g )—mmZ/WJEg% 5
where W (J) = = det(]) r(J~ T - ) (continuous form of the 2D nodal ||.J||? /(2 det J) — 1)

General nonlmear smoothing iteration
X"t = x" — [HF(x")] ' VF(x")

Hessian is inverted with one of the methods used for harmonic smoothing.

Finite elements enable us to minimize on functional level, i.e. we assemble exactly the
functional F, its gradient, etc. element-by-element based on W.

Other choices for W (e.g. non-linear elasticity) are possible.
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rmed grids

Nonlinear mesh smoothing can provide additional robustness on
defo

very

Rayleigh-Taylor Q,

Nonlinear smoothing (20/200 inner/outer iterations)
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The advection phase can be viewed as a “pseudo-time’” extension
of the Lagrangian motion

Lagrangian phase Advection phase

% mesh motion
determined by
physical velocity

% artificial mesh
motion, defining
the mesh velocity

% “pseudo-time” T

evolution

% time t evolution

Both phases
v" material derivative based on

t=20 . o

particle trajectories

Lagrangian phase (¢ = 0) dp 0Op

. L= v, Vp
. dv dt ot ) d(pv) .
Momentum Conservation: P = V.o Momentum Conservation: = Vm - V(pV)
v" Deforming test functions dr
] d . d
Mass Conservation: £ =—pV.Vv % -0 Mass Conservation: d—p =Vm-Vp
dt T
Energy Conservation: de =o0:VV i, d(pe) _ .
= ) P it : v Reynolds transport theorem Energy Conservation: = m V(pe)
dx 0 dp dz
Equation of Motion: — =V T~ = — +pV-v - - _ 94X
’ i .o /U(t) £ /U(t) ar O Mesh veloclty: "
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Discontinuous Galerkin weak formulation of pseudo-time
advection of discontinuous fields

dp

Element-wise weak formulation of pseudo-time advection based on: 20
linear motion (v,, = ), pseudo-time RTT and deforming test functions  |dT

%/me:/i(pw+pw-u:/9u-vw+pw-u=/V-(puw
:Z/V (pu)y Z/puvar/PU'mb

TeT(7) TeT(T)
pu - Vi + {p(u-ng)Hyl + I {v}
- > / fe; | / f fe; )//é/

TeT (1)

Discontinuous Galerkin method with Godunov (upwind) flux
o o= X [oever X [wnnioil -5 ¥ [ wenl
TeT (1) feEFi(T) fEJ'"()

Matrix form assuming trial and test function in the same FEM space with mass matrix M :

O Properties: AT1 =0
37( P) P = =(A+8)+(A+S)

LLL12
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High-order DG advection algorithms for conservative and
accurate remap

moment-based om — AM 'm| m(7) = pY = Mp mass conservation
formulation Ot Q(r)

function-based 0P _ -1 AT reservation of constants, linears
formulation or M™ (A7 +28)p E ,

= Finite element functions are remapped by integrating the above ODEs in pseudo-time.
= The two approaches are the same on semi-discrete but differ on fully-discrete level.

= Mass conservation + constant preservation can be achieved on fully-discrete level by integrating
the mass matrix in pseudo-time.

= A space-time DG method related to these approaches can be viewed as high-order generalization
of the classical “swept-volume” method.
Velocity remap: pseudo-time advection of momentum using continuous FEM space

d 0
(pv) =u-V(pv) — — / p(v-w) =— / p(u - Vw - v) conservation of momentum
dr ot Jo Q

|E remap: pseudo-time advection of density-weighted internal energy using discontinuous FEM

W) e v L[ e = -3 fppten 90 ;/f(“'”f){pe}”“” - gt nslloel]
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Remap of prescribed smooth fields on smoothly distorted grid
(parallel implementation with V.Tomov, TAMU)

density

= Q,-Q, method, full mesh relaxation (100 iterations), 20 RK4 steps

: : , p=e=15+sinmxsinmy
= prescribed smooth mesh distortion, Vipy) = 7/2 + arctan(20({z,y} — 0.5))
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Convergence and errors for the remap of prescribed smooth fields
on smoothly distorted grid with Q,-Q, spaces

10" u T T T T 10° T T T T T 10! T T T T T
e—e After, L;, a=1.990 : o—e After, L;, a=1.990
e—e After, L,, a=1.991 e—e After, L,, a=1.991
e—e After, L., a=1.982 10t 1 e—e After, L, a=1.981
1024 7 Before, L, o —1.998 N 102} T Before, L, o —1.998
- - Before, Ly, a—1.998 - - Before, L,, « —~1.998
-~ Before, L, a—1997 10%F ] -~ Before, L, 1997

Density error
=
o
o
T
Velocity error
=
o
o
T
Energy error
=
1)
4
T

N After, L, a—2.102
107 | . 1
: : : o—e After, L,, a—2.190
105+ | -- Before, L;, a=2975
- - Before, Ly, =2.949
; : - - Before, L, a=2728 ’
-5 I -6 I -5 1 I 1 I
10 27 2l'6 z"5 zl"’ z"3 10 27 zl"s z"5 zl"’ 2"3 1o 2"7 2° 2° 2* 27
Zone Size, h Zone Size, h Zone Size, h

T T
e—e Mass, a=5.679 : e—e Internal, o —2.907
e—e z-momentum, a=5.726 : e—e Kinetic, a—3.079
e—e y-momentum, o =5.652 | : : R 41| e—e Total, a —5.167

|

i
2° : a : : 2°
Zone Size, b Zone Size, h
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2D Taylor-Green vortex remap in BLAST

il
gl

\‘_,
)

p
:

¢

-

speed, t=0.5
= Q,-Q, method, full mesh relaxation (100 iterations), 30 RK4 steps, no artificial viscosity.

= Simultaneous remap of BLAST-computed Lagrangian high-order mesh and fields.

Lawrence Livermore National Laboratory
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Convergence and errors for the 2D Taylor-Green vortex remap in
BLAST with Q,-Q, spaces

107 T T T

Density error

After, L, a«=2.045
After, L,, «=2.125
After, L, a=2511
Before, L, a=2.125
Before, L,, a=1.964
Before, L, a=1.929

7 i
10 27 2l'6 2"5
Zone Size, h

= 53

Velocity error

10!

102}

—
o
[

104F

10°

After, L, «=2.178
After, L,, «=1.970
After, L, «=1.560 [{
Before, L;, a=2.003
Before, L,, «=1.973
Before, L, a=1.872

10" T . -

Energy error
=
=)
&
T

Mass, a=5.282

z-momentum, a =—1.585

y-momentum, o ——0.585

P
Zone Size, b

25

Zone Size, h

= 53

After, L, «=2.263

*—e

o—e After, L,, a—2.354
10 e—e After, [, a—1.862

- - Before, L, a=1.979

- - Before, Ly, a=1.990

: - - Before, L, a=1.801
107 2"7 2"5 2[5 2"" zl'3
Zone Size, h

Internal, a—4.093
Kinetic, a=4.350

Total, o =4.017

I

55

Zone Size, h
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2D Single-material Rayleigh-Taylor instability remap in BLAST

e—e |[nternal, a=4.007

|| e=—o Kinetic, a=5.067
e—e Total, a =4.005

1k

5 e—e Mass, a=5.233
10°M e—e z-momentum, o —12.166
y-momentum, o =3.714

o—o

10%° 5 n 10}

107 F

10-8 .
10°F

100

101}
1012
103}

1014

105}F

101°

density, t=3

= Q,-Q, method, full mesh relaxation (200 iterations), 50 RK4 steps, no artificial viscosity.
= High-order fields enable accurate representation of sharp transitions inside the zones.

= We get higher-order remap error for mass, momentum and total energy.

LLL18
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2D Shock triple-point interaction in BLAST

density, t=1
Q,-Q, method, full mesh relaxation (200 iterations), 50 RK4 steps.

= Preliminary multi-material results. Lack of monotonicity leads to undershoots in density.

= Theremap seems to handle reasonably well the presence of shock and material interfaces.
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To ensure monotonicity for discontinuous fields, we are exploring
ideas from the FCT community

Monotonicity condition:

opi
5 — > Kij(pj — pi)

J7i

= |nthe lowest order case, this holds

_ _M-I(AT
- = for K=—-M""(A" +28).

0.500 0.625 0.750 0.875 1.000

= In the high-order case, it can be - te"Jlfwi:g’i; " -

ensured by “discrete upwinding” but
that is too diffusive.

= Algebraic flux-corrected transport
(Kuzmin & Turek, 2005):

9o
;TZ = " (Kij + (1 — ¢(ri;))Di;) (pj — pi)
JF#u
=  We have adapted this to high-order
0.284 0.517 1‘50 0.983 1.216 discontinuous SpaceS’ bUt more Work iS 0.481 0.616 EBO 0.884 1.019
Q. remap of a step function needed (mass lumping, FEM basis,... ) dlgebralc FCT
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Current and future work

= Preliminary results with high-order ALE
remesh+remap are promising.

= More work is needed to: Simple material
indicator function and
« ensure monotonicity of the remap of high-order its monotone

projection with a

discontinuous fields B

(we plan to consider both algebraic and
functional approaches)

| |
\

« automate the integration in pseudo-time
 handle zones with mixed materials

(we plan to investigate high-order material \ - l \
indicator functions) . .

Speedup
30

: MPI+OpenMP+CUDA
= Some other recent work in BLAST: % o LLNL Edge cluster
« High-order FEM hyperviscosity as a limiter and 15 -
new art. viscosity option (with A.Long, TAMU) ° Sedov 30
 GPU/multi-core acceleration on heterogeneous .
computer architectures (with T.Dong, UTK) Threads - Threads/
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